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Magnetic flux noise is generated by any conductor in equilib- sources but is in thermal equilibrium with a bath. In the
rium with a bath as a result of random fluctuating currents. A source-based picture, flux noise in this conductor arises fra
physical model of this flux noise is proposed, based on allowable  randomly fluctuating noise currents. Random noise currents ¢

current patterns in the conductor, which we describe as natural movements of charge forming a dissipation which is in equ
current modes. This model gives insight into the spatial charac- librium with the bath

teristics of the magnetic noise which is encountered in a variety of . .
9 y We have some limited knowledge of these currents. First of a

magnetic measurements and imaging modalities such as magnetic th i fined to th ductor. Math fical
resonance imaging (MRI). © 2000 Academic Press € currents are conrtinea 1o the conauctor. Viathematcally, O

Key Words: magnetic resonance imaging; signal-to-noise ratio; ~Can use this information to express the current as a series

magnetic flux noise; current noise; high-temperature supercon- Orthogonal spatial functions. A key part of the physical model i
ducting RF caoils. the realization that the series of spatial functions correspond

natural current modes, each having a distinct pattern. In t
source-based picture, each individual current mode is assignec
INTRODUCTION amplitude which varies randomly in time. Collectively, thes

With the advent of high-temperature superconducting I:\;"J_.lrrents form the composite fluctuating current. Th_e sp_at|al d
. . : Pendence of the natural current modes depends primarily on |
coils, there is a pressing need to understand the underlyin

; . . ) . sa(t:’mple shape and geometry. Each mode is independent of
noise sources in magnetic resonance imaging (MRI). Supérf: .
er and represents a single degree of freedom for the currel

nductors have m it ible t tain mor rfect MR . . o
conductors have made it possible to obta ore periec Another consequence of the currents being confined insi

noise images from patients without the interference of noise . : .
. . e conductor is the requirement that the current density at a

from the RF coil. The same is true for nuclear magnetic .
Instant may not enter or exit on any part of the surface of tt

resonance (NMR) appllc_atlons and other applications reaUM 8 nductor. While this may be viewed an obvious requiremer
the detection of magnetic flux.

o o . it imposes restrictions on the allowable current paths. Thi
Historically, models describing the noise detected from con- " . S . ;

: . . ; . combined with electrical isolation (no externally applied volt
ducting bodies commonly invoke the reciprocity theorem. ThiS

. : r within or on th rf f th nductor), forc
approach was introduced by Howt al. (1, 2) to explain the age sources oron the surtace ot tne co (_1uc 0 ), forc
! . o : the noise current to flow in closed loops, solenoidal in natur
signal-to-noise ratio in NMR and MRI. In this method, the » . - .
. . . - . In addition to the obvious restrictions on the spatial depel
noise resistance is computed indirectly from the loading of th o .
ence, there are restrictions on the time dependence of

detection coil as if it were a transmitter. The idea underlyin&Jrrents as well. Although noise currents are random, we ha

this approach is reciprocity between detection and transmis- . . : S
. k ) - me knowledge of their average intensity, which is appo
sion, i.e., the source resistance of a detector coil is equated. fo

) . e : ioned by thermal equilibrium. Each mode is in thermal equ
the load resistance of an equivalent circuit in which the detec- . . . .
: . o . ibrium since it represents a degree of freedom in the systel
tor is used as a transmitter. This is a convenient tool f : . :
. . . . nowledge of the intensity and spatial dependence of randc
computing the response of a given coil geometry, but it does

little for understanding the noise patterns underlying the deos® currents is all that is required to evaluate noise lev

. . : tect ny flux sensitiv tector. Th rrent ner
tection coils. We suggest an alternative method, a more f etected by any flux sensitive detecto © currents gene

i . . uctuating fields and magnetic flux which can be compute
damental approach using three-dimensional current noise

) . . . rectly from Maxwell’ tions.
sources. This method is an expansion of previous wayk)( ecty 1o axwell’s equations

PHYSICAL DESCRIPTION THE NATURE OF CURRENT NOISE

For simplicity, we begin by considering a homogeneous We begin the analysis by assuming the noise current dens
conductor which is electrically isolated from external currenesides inside the conductor. The conductor is assumed to
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electrically isolated with no externally applied scalar potentials J
at or near the conductor. We also assume there are no appre- P 4
ciable displacement currents inside or outside the conductor. T - ) ‘ N \ .
These assumptions are consistent with the so-called “quasi- P Ty P S
static” approximation for electrically isolated conductive ma- ST |
terials, which have (e)/o) < 1. (In the case of whole body f '
MRI this applies for frequencies below 64 MHz.) With these ]
restrictions, the noise current cannot build up charge nor es- ‘ P Y e
cape at any point on the surface. Consequently, the noise ‘- = | '
current density normal to the surface of the conductor vanishes, N

so that,
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wherefi is normal to the surface andl is the noise current
density. The noise currents are physical currents, which means
they must obey the continuity relation given by,
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ap FIG.1. The decomposition of three-dimensional current density into thre
V-J+—=0. [2] independent two-dimensional parts. The soup€eis in thex direction and
ot generates!" andJ®. The circular current loops nedf"” andJ{" are typical
of those created by™. Current densities and current loops are also shown fo
3]
Because we have assumed the conductor is uniform and ef2§ other orthogonal source&” and /.
trically isolated, there are no charge sources or sinks in the

conductor. This means there is no change in charge, so thatffifspendent random variables. In the Cartesian coordinat
divergence of the current must be zero, hence one can represent as

V-J=0. [3] J= IR+ $29 + 92, [5]

VECTOR NOISE SOURCE (i) Each component is a scalar noise source, uncorrelated ¢
independent of the other. The concept of expresgingterms
Since the divergence of the current density is zero, thesethree scalar noise sources is valid in any orthogonal coc

exists a generating vector functigh such that dinate system. For the Cartesian coordinate system, we see
each component ofs produces two components of current
J=V X . [4] density given by
In this context,jy automatically satisfies the divergence equa- IV =V X [pR] [6]
tion, Eq. [3], since the divergence of the curl ofqany vector J? =V x [¢?9] 7]
function is zero. We seek a realistic set of solutigng/hich
satisfies the boundary conditions. As a consequence, this IO =V x[y92]. (8]

means that not all spatial behavior is acceptable. The finite

boundaries of the conductor “filters” out some solutions. These currents are two-dimensional in nature and lie in a pla
The functionys can be interpreted physically as a magnetperpendlcular to the source, as shown in Fig. 1. For examp

zation density, as a current stream function, or as an electi¢ generates only-z currents which circulate about tte

vector potential. These are all equivalent interpretatign§)( axis. The total current density noise is the sum of all th

In the context of our application, we prefer to vieas the two-dimensional current densities and is given by

fundamental noise source, a source stream function which

generates current density noise. The current density noise is of

primary interest here because we can investigate the dissipation J=>J3". [9]

and the fields generated by it. We assume the current density

noise sourcey, is a white vector noise source, a function

whose amplitude, phase, and direction varies randomly in time.The noise current consists of a superposition of three tw

One way of describingjr is to define it in terms of three dimensional currents which are independent and uncorrelat
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with one another since they are formed from independent noeted with the fluctuation of a current density spatial mede
sources. This decomposition allows us to reduce the thréem a given source componentat a frequency is given by

dimensional current density noise into three sets of less com-
plex two-dimensional current densities, each driven by an

independent scalar noise source. v
P Pd=<pH”Jn<r,t>

THE CONCEPT OF NOISE SOURCE MODES

dV> . [15]

Because the noisy region exists only in the conductor and thel hese powers are in equilibrium which allows us to write
conductor is bounded, each component of the stream function
and associated current densities can be decomposed physically
into a sum of spatially independent modes. At any given time, <p jff ’J;(r, t)
the spatial “boundedness” allows one to expand any compo-
nent of ¢y as a series of discrete orthogonal spatial functions
which are identified as modeg)( For example, the compo-

nent of th rce function can be expanded into an infini Thermal equilibrium is isotropic here, with no preference i
s:riesoof rﬁosdoeusce unction can be expande 0a rtl%ise source directiow. [In Ref. (8), the Nyquist relation,

which has been recast in Eq. [16], is derived using the metho
of Kubo. The equilibrium condition with blackbody radiation
p =2 al(he,(x y, 2), [10] is sometimes described in statistical mechanics as the fluct

n tion dissipation theorem.]
The powerP, represents the power dissipated by the sourc
where, ¢, is the orthogonal spatial function of thgth mode. assuming no loads are connected to the source. This is Jo
The amplitudea(’(t) is a randomly fluctuating function rep heating due to the source currents alone. It also represents

resenting the strength of thgth mode at a given time. The totalmaximum available power which can be delivered to extern
noise current associated with thelirected stream function is cjrcuits. There is also Joule heating due to eddy currents. T

2
dV> — 4KTAf. [16]

a sum over modes and is given by current noise sources induce a minuscule amount of ed
currents in the conductor. In this case, the conductor itself a

JW =33, [11] as an “external circuit.” The source currents magneticall

n couple to the conductor which appear as a load. Eddy curre

dissipation does not play a role in partitioning the availabl

where noise power in the conductor, because eddy currents are Ic
currents rather than source currents. Eddy currents develop

3571> =V X §(a571>(t)¢n()(, Y, 2). [12] inductive coupling and shield the magnetic fields generated |

noise currents, giving rise to a penetration or skin depth effe

CURRENT NOISE INTENSITY

] ] ) ) RELATIONSHIP BETWEEN CURRENT DENSITY NOISE
The noise picked up by RF coils or flux sensors in MRI AND RF COIL FLUX

measurements is thermally driven magnetic noise from the

sample itself. For the model, we assume for simplicity that the Ngise in a conductor appears as time-dependent fluctuati
MRI sample is a conductor with a resistivity and is in  cyrrent densities which act as field sources, inducing magne
equilibrium with a bath near room temperature. For MRiyx and generating a voltage which can be detected by
applications, the noise power spectrubnis independent of getector coil or RF receiver coil. (Here we assume the RF cc
frequency over the measurement bandwidth and is given by hsists of perfect conductors and does not generate any

Nyquist relation, which can be expressed simply as, ditional noise in the detection process.) The fluctuating curre
density and its associated fields also generate eddy current:
G = 4KT. [13] the conductor, which tend to shield the flux. This can easily &

seen from Maxwell's equations involving the noise currer
The fluctuating power associated with black body radiatiatensityJ e
over a given bandwidtiAf is simply
VXB=pu(Jniset J 17
P — AKTAf. [14] M( noise e) [ ]
B

On the other hand, time-averaged dissipated power associ- VXE=—%¢ [18]
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V:-B=0 [19] detector and it is placed about the sample. The flux induced
a detector coil is given in terms of the vector potential as,
V-E=0. [20]
In Eq._[17] we assume a quasi-static behavior w_here cu_rr_ents D(t) = B(r,t)-dS= @ A(r, t)-dl. [26]
are flowing through a homogeneous conductor with negligible

displacement currents. The eddy currdptinduced by the
noise current is given through Ohm’s Law,

coil coil

The analysis clearly demonstrates that the flux noise picked
Je= oE. [21] in an RF coil is driven by current density noise through thi
vector potential. The exact form of the vector potential depent
In this analysis we assume the conductivitis independent of on whether the RF coil lies inside or outside the sample.
frequency, which is usually valid within the bandwidth of the

measurement. NOISE IN THE RF COIL
Since the divergence @ is zero, we introduce the vector
potentialA, The relationship between current density noise, flux nois
and detectable voltage noise in an RF coil can be found |
V X A=B. [22] starting from the definition of mean squared flux, which i
given by

Substituting Eq. [22] into Maxwell's equation [17] and also

into Ohm’s law, we obtain the differential equation for the 1 (T2

vector potential inside the conductor in terms of the noise ®2 = lim TJ d?(t)dt. [27]
current density, T 112

o in gAT Moving from time to frequency, we define the Fouriet
—VEAT 4 po = wnoise [23]  frequency component®(w) as
The time dependence of the vector potential generates an * )
electric field since, O(t) = & (o)expliot)do, (28]
dA
E=-VV- ot and where

In this analysis, we have selected the Coulomb gauge 1 (- )

(V - A = 0) and since there are no voltage sources, the static Plw) =5 J (t)expiwt)dt. (29]
potential V is zero or constant both inside and outside the -

conductor and does not contribute to the formation of fields or

currents. Consequently, the induced currents are eddy currentSor MRI applications one is usually interested in a relativel

and are given by narrow band of frequencies centered about the resonant f
quency (,). Assuming the flux noise spectrui(w) is fairly
gA N constant over a bandwidthf centered atw,, the root mean
Je=—0— [24] squared flux in the time domain is given by
The eddy currents are not primary source currents, but rather D= (2m) *Af|D (o) | [30]

secondary “load currents,” currents resulting from the chang-
ing fields generated by the source currents. Outside the conFor an RF coil detector, a single-turn or multiturn loop i
ductor, the vector potential obeys a slightly different equatiofgrmed around the region of interest. The voltage measur
across a single-turn RF coil is the time derivative of th
VA = g (Tt Jo). [25] induced flux which leads to

In a typical flux-detection measurement, a coil is used as a V(@o)]? = 03| ®(wo)|?. [31]
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In a similar manner, one can relate the rms voltage to the e \
voltage power spectruiV(w)|? in P d —
,/// /f)p ‘-
V.= (2m) A1V (w,)| % [32] (S B N
w \\\ L 7
i e e /// \
The voltage power spectrum is normally measured in MRI and r// R e ﬁ
it is related to the flux power spectrum in ! ‘\\\ZG “\}K/ .
: 57
\‘ ‘ Q MRI\Y// }‘ ,,‘/;v\f/ r\
2 2Af 0?2 2 Ay | )
Vine = (2m) At ®(w,)|> [33] S
\\\\ \\\ e ﬁy / //
At this stage, it is common to express the noise in terms of \\/ ’//
an equivalent noise resistance seen by the RF coil. In this \‘L e
instance, the noise resistance of a perfect lossless RF caolil is g
defined through the Nyquist relation, FIG. 2. Two-dimensional rectangular sample and RF coil configuratior

The RF coil and sample are infinitely long in taalirection.
V?ms = 4kTAfRn0ise [34]

in which ®(w,) is the flux generated by theth scalar noise
0];Jrce component and thgh spatial mode. For the Cartesian
case, the noise resistance has separate contributions<frgm
Z noise source stream functions.

Comparing the voltage noise associated with flux in Eq. [3
to the usual Nyquist formula, the equivalent noise resistance
an RF coil can be identified as

mlw?
Rigise = T |D(w,)|?, [35] TWO-DIMENSIONAL NOISE SOURCES

IN A RECTANGULAR CONDUCTOR

where As a simple demonstration of the source-based method
ogy, we consider the case of a long rectangular conductor w
uniform conductivity. This conductor has dimensions 2a an
D(w,) :5{}( B(r, w,) - dS [36] 2b and a very long length 2L shown in Fig. 2. Since th

conductor is extremely long in thedirection, we can neglect
coil end effects, which means the source and its associated curre
are independent of. This reduces to a two-dimensional prob-

and lem with the stream function in the direction, generating
noise currents only in th&—y plane. Because the current is

. bounded within a rectangular region in tlxey plane, the
B(r, ) = i f B(r, t)expliwgt)dt. [37] strgam fun_ctio.n over this region can be expanded into a Four

2 ) series, which is given by

We can also identify the noise resistance associated with a
particular spatial current mode. Since the currents and fields offz = pO =2
each mode are uncorrelated, the flux from each mode is also
uncorrelated. This leads to a form valid in any orthogonal X P2 (Hcodkx + dp)codkyy + bg), [40]
coordinate system, ’

3 where the discrete spatial frequencies are defined as
Rnoise: E 2 Rqu)r [38]

o k=T =TT herel, m= 1, 2, 3

|_£1 m_%, Were,m_ y y C ey
where
[41]
RO — T} 1B (wy)|2 [39] and the integers m identify the mode pattern and the phase

n kT noATe ¢, ¢4 are in phase and out of phase components so that
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B P d B qm a
bp="p an ba=75 [42] 1.5
This notation is a compact way of representing the conven- 1

tional two-dimensional Fourier series which contains all com-
binations of sines and cosines. The functioff,,(t) is the

amplitude of the noise source stream function for a specific
current density mode or pattern. The corresponding current
densities are derived from the curl ¢f, which become 0

0.5

‘]§<3)(Xv Y, t) = -

X Kt 12 o(t) coskix + ) sin(kpy + dg)
[43]

X kirimp(D)sin(kx + dp)codkny + dy).
[44]

To meet the boundary conditian i = 0 at the surface, only
certain modes are allowed, including

cogkx) forl =oddandp = 0;

sin(kx) for| = evenandp = 1;
cogk,y) form= oddandq = 0;
sin(k,y) form= evenandq = 1.

This provides a rich mixture of harmonics for generating
random patterns, collectively forming current loops of all
imaginable sizes and shapes. In Figs. 3 and 4 we show exam-
ples of allowable current patterns which fit the boundary con-FIG. 3. Odd, odd current density modes: (a) contour plot of the lowes
ditions. Note that the even/odd current patterns in Fig. dder current density noise source made= 1, m = 1 in a rectangular
contribute no flux in the(—y plane and are hence invisible toconducti)r or MF\il sgmple, (b) contour plot of the current density noise sourt
. odel = 5, m = 9 in a rectangular conductor or MRI sample. The curren

any flux detector which encompasses the boundary of t QIowing clockwise in the bright region and counterclockwise in the darl
conductor. Itis evident that only odd cosine harmonics, such@gion. The noise current density amplitude of a given mode is random in tin
those shown in Fig. 3, contribute flux to the RF coil. but flows in the same pattern.

The vector current density associated with each mode can
now be fully described using Egs. [43] and [44]. Following thérom thermal equilibrium described in Eq. [16], which expand
notation in Eq. [8] we have into

-1.5 -1 -0.5 0 0.5 1 1.5

Im,pq

+ k¥ sin(kx + ¢p)codkyy + ¢g)l. [45] “a
X [kzcoS(kix + ¢p)sin*(kyy + )

IimpelTs 1) =~V Ok cothox + dpysintiny + b (t)|2>r deb dyJL iz
b -L

At this stage, the intensity of the noise source can be found — + kisin?(kx + ¢y)cos’(kny + ¢o)] = 4KTAf.  [46]



A 3D PHYSICAL MODEL OF MRI NOISE 159

The next step in the analysis is to examine the magne
fields and flux generated by the noise currents. The magne
fields associated with the noise currents are most natura
derived from the magnetic vector potential in the conducto
Because the conductor is bounded, the vector potential can
expanded into Fourier components, which are given by

A(I’, t) = z Alm,pq(r: t)v [49]

I,m;p,q
where
Aimpg(r, 1) = Af(DX cogkix + ¢y)cogKkny + ¢g)

+ Afm(t))? COik|X + (bp)Cngmy + d)q)
[50]

Moving from the time domain to the frequency domain,

1 (-
UitpelTs @) = 5 | Wiilp(r, @)expiot)dt  [51]

1 (=
Il @) = 5 J IR2(r, Dexpliot)dt  [52]

1 (=
Ao, ) = 277J Aimpe(r, expliot)dt.  [53]

Solving for the vector potential Fourier components using Eq
[49] and [23], the solution becomes

~-1.5 -1 ~0.5 0 0.5 1 1.5 @
;P . o /J“‘] Im,pq(ri w)
FIG. 4. Even, odd current density modes: (a) contour plot of current A pg(l, o) = k2 +iono” [54]
density noise modé = 2 m = 5, (b) contour plot of current density noise —Kim T lopo
model = 4 m = 5. The current is flowing clockwise in the bright region and
counterclockwise in the dark region. An RF coil would have no net ﬂ“Matching like terms leaves
generated by these current density patterns because there is the same number
of current loops flowing clockwise and counterclockwise.
_Mkm
Afpd @) = — 7 Y3 (0 55
Im,pq( ) 7k|2m + iopno l1[flm,pq( ) [ ]
Integrating on the left side, the expression reduces to
and
(01D = i @7
Im = L2 Aol ) !
m,pq pkZ.ab(2L) , —wk ®
Alm,pq(w) = _ I2m + i(,()/JJJ' Im,pq(w)- [56]

where

k2, = kZ + K2, [48]

The complete vector field function associated with a give
mode is then
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— pippg(@) or
AmadT1 ©) = 2
N . 0} 16u? Kim
X [ka COE(kIX + d)p)sm(kmy + d)q) le = kT |l/jl(r$1),00(wo)|2 klzkrzn kl4m + (woMU')Z' [63]
+ k¥ sin(kx + ¢p)codkny + bg)].
[57]

] R Substituting the known mean squared intensity of the noi
To find the magnetic field in the conductor, one uses the c4@durce, we have the corresponding spectral density from E

of the vector potential in Eq. [22], which results in [47],
Bin(w) = M‘l‘(a) (w) Lﬁ“z <|lpl(r?1),00(t)|2> = 4772Af|lpl<r?1),00(w0)|2
! " ~Kin + lopa AKTAf
X cogkx + py)cogkyy + d,).  [58] = o(k?+ kZ)ab(2L) [64]
Integrating this over the region defined by the RF coil, one h"ﬁ‘nis simolifies into
the magnetic flux, which is given by P
KT
2 o) = —Z7—m. 65
Do) = # B(r, w,) - dS. [59] [imoo @) mkf,ab(2L) [63]
coil Putting this into the formula for noise resistance, Eq. [63], th

noise resistance can be written
For the case where the RF coil encloses only the region of the
conductor 641202 1 k2
o m

Rin = (2a2b)(2L) K22 K + (wopo)

[66]

2 tiowo

_k|2m a b
() = (3 e — dx d
impa( @) = Himpe( @) ) y We can associate a characteristic mode frequency for ez
a

mode defined as

X cogkix + ¢y)cogKyy + dg), [60]
k? + k2,
which becomes Om = [67]
— 1@ — 4K So that
(I)Im,pq(w) = Mlplm,pq(w) klkm(_klzm + iw[.LO')
o\ (mm 61 @, 2
X sin o )sinl - cog ¢,)cod ¢y). [61] o

[68]

A net noise flux only exists for oddd m andp = g = 0,
which is obvious when examining the current density pattern§1
in Fig. 3. This means the stream function noise and the fligere
noise consist of only cosine terms with otldand m. It is
interesting to note that the flux noise and the stream function o _ 64p [(Za) ? <2b> 2] [69]
noise or, equivalently, the noise magnetization have similar m \% Ky mm) |’
spatial patterns.

The noise resistance of the mode can be obtained from #ed whereV is the volume of the sample. The total noise
noise flux using Eq. [39] with the only surviving terms beinghecomes a sum over all modes,

2 2

T W, =
le = kT |q)lm,00(wo)| 2 [62] anse | r%dd le. [70]
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e lm  mw . nw_ ~ R R
e T Kim = 55 X+ 5 ¥ ¥ 5g 2= kX + ke T ka2 [74]
NN e
; S "~ \a
)/ ﬁ\\}:\\\\ //// |

// ;\‘T J and the phases
. 20" -
! 74 -
i \ ;\\ 7
SMRI \/ e

r pm qm rao
| bp="% b= =5 [75]

wherel, m, n, p, g, andr are positive integers. The corre-

FIG. 5. Three-dimensional rectangular sample and RF coil configuratiogponding noise current densities derived from the stream fur
The RF coil and sample have different lengths in zhdirection. tions are

@ — 6
The same expression can be derived using reciprocity meth- =2 Witnnpar(DCOLKX + )

ods as shown in Appendix I, but the interpretation of the X [—ik,9 cogkyy + ¢g)sin(k,z + o)
formula is different and it is not obvious that the modes o
correspond to specific noise patterns. In the reciprocity calcu- +iknZ sin(kyy + ¢q)codkez + ¢r)] [76]

lation, the dissipated power is caused by induced eddy current ;) _ (2)

patterns generapted inrihe sample when ¥he RF coil is l)J/sed as a‘J 2 Himpa(ticoskny + o)

transmitter. The total load or noise resistance is formed by X [ikX cogkx + ¢p)sin(k,z + ;)

summing the power dissipation per unit amp caused by each S

eddy cugr]rent ppattern. Thié3 meanps we can azsociate thz trans- ~ ikiz sinlox + dp)costknz + )] [77]
mitter driven eddy current patterns with the actual spatial noise
sources. I® = i a(tcogk,z + o))

X [—ikypX cogkix + ¢p)sin(kyy + ¢g)
THREE-DIMENSIONAL NOISE IN A o
RECTANGULAR CONDUCTOR + ik sin(kx + ép)cogkyy + o). (78]

As an example of a three-dimensional noise source, we - .
examine a conductor shown in Fig. 5. Because it is bounded inAs before, the boundary condition requires that the norm
three dimensions, the noise source can be described as a séag¥onent of the noise current vanish at the surface, so tf

of three-dimensional orthogonal stream functions given by only certain stream function harmonics are allowed. The a
lowable harmonics are

_ ) — \ J GOt cogkx) forl =oddandp = 0;
=t 2‘; m=0 n=0 p=0 q=0 r=0 |mnqu( ) Sin(k|X) for | = evenandp =1;
cogk,y) form=oddandg=0
X cogkx + by)cogknX + pg)coskx + ¢;)  [71] sin(k,y) for m= evenandq=1;

cogk,z) forn = oddandr = 0;
sin(k,z) forn= evenandr = 1.

X cogkX + ¢p)codkpX + dg)cogkx + ¢)  [72] The time-averaged noise intensities can be found by applyii
the conditions of black body radiation in Eq. [17], from which

|=0 m=w n=x p=1q=1r=1 we find
l,[f = l,li<3) = E 2 llll(r?\)n,pqr(t)
=0 m=0 n=0 p=0 q=0 r=0 AKTAf
X cogkiX + ¢p)COSKX + Pg)cogkex + ¢p).  [73] ([¥imnpar(D] %) = k2 abe [79]
: ; i P AKTAf
Here we have discretevalues which are readily identified in (o2, (]2 = [80]
the vector Imn.par pkZabc
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AKTAf _I-Lkmknlpl(r%\)n,pqr(w) .
<|dll(r?1)n,pqr(t)|2> = k2 abc’ [81] Bl(r%)n,pqr(w) = _klzmn + inO' Sln(k|X + qbp)
where X cogkyy + ¢g)sin(k,z + ¢)z + ... [90]
_“*k ll’lmn r( )
Kin = ki + K3 821 Bimnpalw) = a0 codkix + dy)
2 _ 1,2 2
Kin = ki + ki [83] X codkny + docoskz + )z + . .. [91]
k|2m = k|2 + kfn. [84]

We proceed to solve the flux in the RF coil, which is given b

It is interesting to note that the surviving intensities are inde-
pendent of the phase, specifically the phase varighlgs and

r. The vector potentials from each source can be derived from Dynpgr(@) = # [Bimnpar(@) + B2k (@)
Maxwell's equations using Eqg. [23] and are given by

coil

Ylmnpar(t) + B{2(w) ] - 2dxdy. [92]
Imn pqr Imn
Alprnpa(T, ©) = W cogkx + ¢p)
R . Grouping the flux by noise components, we have
X [—kyy codkny + dg)sin(k,z + ¢)
+ k2 sin(kny + do)coskiz + ¢,)] D frpar(@)
[85] _ u (ecogkz+ —kik,
_Mlpl(r%)n,pqr(t) B I““ljlmn,pqr @ COi nZ d)r] - I2mn + iwp.c'

Al(r%)n,pqr(ra (,0) = Coikmy + ¢q)

—k&, t ipow
X [koX cogkx + ¢p)sin(k,z + ¢,)
— kzsin(kx + ¢p)cogk,z + ¢,)]
(86]

a b
xf dxf dy cogkx + ¢p)sin(kny + b4 [93]

I(ri)n pqr(w)

_Mdll(r?w)n,pqr(t)
—k&n Tt inocw

X [ =KX cogkix + ¢p)sin(kypy + ¢g)

+ k9 sin(kx + bp)cogkyy + dg)].
[87]

w) = cogk.z + ¢)

A I(mn pqr(r

From the geometry of the RF coil shown in Fig. 1, the
magnetic field of interest is in th2 direction, normal to the

= P“[/(Z) (w)cogk,z + ,] A
Imn,pgr n r _klzmn + iopo

a b
X f de dy sin(kx + ¢p)codkny + ¢, [94]
-a —-b

I(r:;)n pqr(w)

_ L2
Im

= M‘l’l(ri)n,pqr(w)coiknz + ¢/

K2 Y imuo
plane of the RF coil. The-component of the magnetic field is Kimn + 1o po

derived from the curl of the vector potential, and is given by, a b
X f dxf dy cogkx + ¢y)cogkyy + ¢g). [95]
a b

aAX 88 - -

aA
27 9x

The noise resistance is related to the sum of the flux pow

spectra of each component, which is written

Separating the magnetic field into parts associated with each
scalar noise source, we have 2 2 3
_ T W (v) 2
len - W E |(Dlmn,pqr(wo)| . [96]
_Mklkn‘l’l(r%)n,pqr(w) vt

—kZ,.,+ iono

B I(mn pqr(w)

cogkx + ¢p)
In Appendix B, we show that for a thin coil located at&=
0, the noise resistance becomes

X sin(kny + ¢ég)sin(k,z + ¢p)z + ... [89]
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Ry m2w? 16kT of a Iong sample. We show in Appendix B that as— L,
mn = BT pr2abd ki + (wono)?] wherelL is large,
k2 k2 ) <|7T) mar
X | o 4 o | SIN? 5 sin2<)for n even _nm
(kﬁkﬁm k?k? 2 2 kn=5; = 0, [104]
[97]
from which follows
and,
mn —> @m 105
R 2 w2 16kT @ @ [105]
BT prabdkin, + (0ono)’] and
1 1\ I\ L[ mm ¢ dd
X k7|2+k7|2 sin 75”’1 7 or n odd. [98] (%)2
S Ry, — RP, [106]
This can be rearranged so that the MRI noise resistance of a —~ Im o) 2
single spatial mode becomes 1+ Oim
o’ This agrees with the noise resistance of the two-dimensior
w2, model in Eq. [68].
o]
Rimn = Rimn 77 27 [99]
o
[1 + (w.mn> ] RESULTS
o ) ] Noise detected in NMR and MRI is a combination of nois
where the characteristic frequencies are defined as generated by the RF coil, the sample, and the RF preamplifie
(For MR, the sample noise is normally called patient or bod
B K2 noise.) The noise of an ideal instrument is dominated by tt
@imn = no [100] sample noise. Other noise sources are usually minimized

using high-Q RF coils and low-noise preamplifiers. It has bee
pgwna priori that the origin of the sample noise is randomly
uctuating currents in the sample.
Sample noise is physically Johnson noise associated with
5 5 sample’s source resistance. Noise is usually described a:
o _ @ ( K + n) sin2(|> sz( ) n odd single scalar parameter with no indication of its spatial depe
Imn 21,2 21,2 ’ . .
abe \ kikin, - kiki 2 2 dence. In this work we have shown that noise can be expres:
[101] @asathree-dimensional current noise source and is related to
16p/1 1\ (o (mm temperature and resistivity of the sample. Maxwell's equatior
= ( >Sln ( )sm (2) neven. [102] restrict the allowable current patterns in any bounded condu
tive sample. Only certain distinct current patterns (currer
density modes) are allowed to exist in a bounded conduct
The total MRI noise resistance for the 3D rectangular is tr;reh.ls restriction alsc_) applfles to noise curr?nrt] sources. Tlhe t%
sum over all modes. which is Ems_e current consists of a vector sum of these normal moc
aving randomly fluctuating amplitudes. This makes the noi:
source current appear as if it were flowing in random patt
Ruoise= 2 Rimn. [103] through the conductor. An example of noise current densi
hmn patterns predicted by the two-dimensional model are shown

Figs. 6 and 7 for various instances in time.

The noise consists of terms generated by thdirected Current noise generates joule heating which is in therm
stream functiony™ and also includes contributions frot”  equilibrium with the bath. Because of the equilibrium condi
and ¢®. The coil “feels” the noise from the—y sources tion between the bath temperature and the dissipation, one
through thek, dependence which originates fra? andy®. able to quantify the time-averaged intensity of each indepe

To verify that three-dimensional noise resistance can dent current density mode. Each current density mode gen
reduced to that of the 2D model, we examine the limiting casges a fluctuating magnetic field. The fluctuating field produc

The frequency independent parts are segregated into odd
even parts, where

[o]

Imn — abc

kK

2
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MRI techniques evenly spread the noise all okespace,
which results in noise spreading throughout all regions ¢
image space, including regions were no sample exists. Noi
spillover is very obvious in human imaging. Regions of higt
conductivity (for example muscle) should be noisier tha
those of low conductivity (for example fat). This is not
usually observed in MRI images.

The source of this phenomena can be traced to the w
images are normally acquired in MRI. The signal spatial in
formation is encoded and mixed with a composite noise sign
consisting of noise coming from all regions of the sample. Th
noise is not encoded spatially, so information about its locatic
is lost in the acquisition process. In most methods, noise
allowed to leak in uniformly ovek-space, whereas the real
noise source is not constant kaspace. A truek-space noise
image would have projections or profiles which would have n
noise beyond the boundary of the sample and a noise intens
which follows the shape of the object. The leaking phenomer
FIG.6. A composite current density noise source with mode content up fpS1 a5 the noise image appear much different than it actua

I = 5, m = 9 containing only odd harmonics. The pattern represents.a | MR i th L if
snapshot of the random current density in a rectangular MRI phantom adSt [N many Images, thé noise Image appears unitorm ov

might appear at a given time. The symmetry is due to the presence of only $8¢ FOV, whereas in reality it should be confined to the nois
harmonics. source region.

One method of presenting a more realistic noise picture is |
restricting the FOV. If the FOV is restricted only to a volume
flux noise. Flux noise from the noise currents in the sample ocontaining the conductive material, the noise outside the FC
patient generates a voltage in RF coils, which is the “bodlisappears. This can be accomplished by restricting the size
noise” detected in MRI. the RF coil or simply by truncating the image at the knowi
A quasi-static model has been developed in this woltoundaries of the conductor. Truncation forces the noise
which gives a simple physical picture of imaged noiseero in those regions which are known to be void of conductiv
sources. The noise resistance computed from the model fioaterial. Truncation in space is a form of filtering which
a two-dimensional rectangular sample agrees with the reodémoves spatially miscodddspace noise responsible for gen-
procity methods. It is found that for any given geometry the
noise predicted by the source-based approach is not differ-
ent from that derived from reciprocity. Reciprocity is a 1.5
fundamentally sound approach for evaluating noise, as long
as the system behaves in a linear fashion. The focus of
reciprocity is usually a single scalar result like noise resis-
tance. What is different about the source-based approach is :
that information about the spatial distribution of the noise 0.5
naturally flows out of the analysis. '
The current is decomposed into spatial modes fluctuating
independently from one another. The current modes can be
thought of as localizedk space modes in the sample. The
analysis shows that MRI noise is not evenly distributed in .5
k-space. This should not be surprising, particularly if we
visualize a “perfect MRI noise image.” In a perfect MRI
noise image, magnetic noise should appear only where noise
is generated. Furthermore, the noise image should have a
contrast associated with its conductivity and temperature; -1.5
i.e., regions of high conductivity generate more noise since a5 4 s 0 0.5 1 15
the noise resistance is proportional to the conductivity as

. . FIG. 7. A composite current density noise source with mode content up |
demonstrated in Egs. [97] and [98]' Most MRI teChmqueIS= 8 m = 9 containing odd and even harmonics. The pattern represents

do not form true noise images or ?mages which reflect tR@apshot of the random current density as it might appear in a rectangular M
true location and contrast of the noise sources. Instead, mgsintom. Note the pattern looks random and has no symmetry.

-1.5 -1 -0.5 0 0.5 1 1.5
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erating noise in void regions. This is a brute force approach. L LR
Other techniques combine the use of RF coil arrays (such as iz B

SMASH and SENSE) and are more spatially selective, provid-

ing an opportunity for the display of a more realistic distribu-

tion of noise ink-space. X

JY-AM
N

CONCLUSIONS

Two- and three-dimensional models have been developed to
explain the behavior of MRI/NMR noise sources which fall ! :
within the quasi-static (low-frequency) regime. The two-di-  FIG. Al. Integration path for the two-dimensional noise model.
mensional form of the model has been shown to be in agree-
ment with reciprocity, which has been well established exper-
imentally and is routinely used to estimate RF noise attributéal be very thin, having a width oA. Following Fig. Al, the
to the sample. The three-dimensional model converges to théve current density for this case can be written as,
two-dimensional model in the limit of long samples.

It is too early to predict exactly what new information will Jg = lim K{K[v.(x, @) — v_(x, a)] + J[v(y, b)
be gleaned from this model. Often times different views yield A0
different insights which lead to new innovations. Take for — u(y, —b)Tlu(x, a+ A)u(y, b+ A), [A1]

example the role of equivalent networks and how powerful a
given representation can be beyond the voltage and current it
predicts. The source-based model gives an equivalent but
view of the origin and production of sample generated noise
working its way into magnetic measurements. The model is not
intended to be a routine tool to evaluate the performance of a
given detector coil configuration which can readily be done by v (¢, a) =1 when—a< ¢< —a— A and zero otherwise,
reciprocity and finite element analysis. Instead, the model
presents for the first time a detailed picture of the intrinsic
sample noise, a three-dimensional vector noise source, which,
heretofore, has been lumped into a single scalar parameter suchhere also exists an eddy current stream function such th
as noise resistance or noise voltage. The model is expected to

be helpful in formulating and evaluating noise reduction strat- VX g =J,

egies, especially in MRI systems.

v (£, a) =1 whena< &< a+ A and zero otherwise,

u(é, a) =1 when—a< &< aand zero otherwise.

APPENDIX A which satisfies the divergence

Reciprocity Derivation for the Noise Resistance V-J.=0.
of a 2-D Rectangular Conductor

Assume the RF coil in the transmission mode consists of anNOW the integration over a path shown in Fig. Al is sucl
infinitely long current sheet flowing around a rectangular sarifiat
ple as shown in Fig. 2. The field obeys Maxwell’s quasi-static
equations and Ohm’s Law and is given by

a,b a,b

VXB =g+ Jo)

VXE - B [A2]
BTt
] E Using Green’s theorem, this reduces to the line integral
e— O
V-J.=0.

B-dl=p,#.ld-ds+¥ VX §-dS= puly+ ple

Here,J, is the drive current in the RF coil ard is the eddy ab
current developed in the sample. The current sheet is assumed [A3]
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Completing the integration where
L= . I m
B{x, y) - L = pKu(x, a)u(y, b)- L K=o kn=op . and I,m=1,2,3... [All]
=[x y) = an, YL [A4]
pm qm
b, = > and ¢, = 5 [A12]

Here we have taken the limit for a thin current sheet in the
following integrals: ) ) )
The integers, midentify the mode pattern, and the phaggs

¢, are adjusted to meet the boundary conditions. The changi
a+ [L magnetic field induces the eddy currents, since
Jq-dS=lim K {X[v.(x, a) — v_(Xx, a)]
X 0

A—0

ki

X u(x,a+ Au(y, b+ A) - ydxdz

[A13]

Putting in the sinusoidal dependence we have

#Jd-d8=lim Ku(x, a+ A)u(y, b) - L 0. 93
A0 icwB, =~ — ——.
ay  ax
= Ku(x, a)u(y, b) - L. [A5]

Substituting the current density in the above expression yiel
Similarly in they—zplane,
iUsz = _E (kI2 + ksn)llflm,pq

Im

ﬁg Jg-dS=lim Ku(x, a)u(y, b +A)-L X cogkx + ¢p)cogkyy + ¢y), [A14]

A—0

= Ku(x, a)u(y, b) - L. [AB] _
and since

There is no eddy current beyond the conductor, conse- _ _
quently in this regiongs should be a constant or zero. This Ba(X, y) = mwKu(x, aju(y, b) = pi(x, y),  [A15]
means the magnetic field in the sample is related to the drive
current and eddy currents in the material following Eq. [A3], E (k2 + k2 + i Lo W) Pim pgCOS KX + bp)cogKny + ¢bg)
Im,pq

B,(X, y) = uKu(x, a)u(y, b) — uiy(x, y). [A7] = inocwKu(x, aju(y, b). [A16]

Since the eddy currents are constrained inside a conductor, th&'€ Next step is to identify the stream function harmonic:
stream function can be expressed in a Fourier series, This is easily done if we recognize that the harmonic content

the two-dimensional unit-bounded function can be expresse

ll’z = E ll’lm,pqcoiklx + (bp)coikmy + (bq) [A8] 16 1
Im,pq u(x, aju(y, b) = — > im coskx)coskyy).  [AL7]
I,m odd

The current densities are derived from the curl of the steam ) )
function and are This implies that only thgg = 0, g = 0 harmonics contribute

and they are given by

Jim = ~Knhim(t)coskix + dp)sin(kny + ) [A9] iwow

3y = Kibm(Dsin(kx + d)coskny + b),  [AL0] Vim0 = Tk e ™ [AL8]
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where APPENDIX B

16K 1 The Noise Resistance for a 3-D Rectangular Conductor

Kn=—% wherel, m are odd and zero otherwise.

w2 Im The noise resistance is obtained by completing the integr

[A19] tion for the flux in Eqgs. [93], [94], [95],

In the reciprocity argument, quantity of interest is the power

loading or the power dissipated in the conductor. If we assume

the conductor and RF coil extends fram= —L to +L the
power dissipated is

1 1 c b a
P=2pJJ-J*dv=2pwam,oof f f
l,m -cv-bY-a

X (kZcoskx sin’kyy + k2cos?k.x sin’ky)dzdydx

[A20]
This reduces to
P = 256p(now)?ab(2L) K?
> k? + k2 1
X2 (K2 (pow)? Zmzgt (A2

I,m odd

_4k|kn
Kinn + Twpo)

q)l(:m)n,pqr(w) = Md’l(r}w)n,pqr(w) k|k (_

|7 mar
X sink,z + gbr]sin(2> sin(2>
X COS ¢,sin ¢y [B1]

— 4Kk,
Kinn + 1op0)

q)l(rzn)n,pqr(w) = Md"l(ri)n,pqr(w) k|k (_

. (lw\  [mm
X sink,z + qbr]sm(2> sm(z)

X sin ¢,C0Ss ¢y [B2]
4K}
(3) — (3) m
q)lmn,pqr(w) /““plmn,pqr(w) klkm(_klzmn + inO_)
" (lw\  [mm
X cogk,z + ¢,]sin > ]sin( 5~
X COS ¢,COS ¢ [B3]

The noise resistance is simply equal to the load resistance,
which can be found from the dissipated power and rms drive 4. 4 thin coil atz = 0. the surviving terms for each

current at the resonance frequency, which is given by

R = Ripag = P = 2P A22
noise — Ioad_<1 I)Z_(K‘ZL)Z' [ ]
V2
This leads to
R 640 u’wiab
™ (8abL)(kiky)®

k? + k2
KT+ KB+ (powd)?

for [, modd [A23]

B 640 u’w?ab k2, or | dd
Rin = (8abL)(kkn) 2 Ky + (powd? o0 Modd
[A24]
which agrees with Eq. [66], and where
Rnoise: E le- [A25]

I,m odd

QED.

component of the flux are

CI)(l) ((1)) — lp(l) ((1)) —4k|kn
Imn,011 K% imn 011 kIkm(_klzmn + iw}LO’)
AL B4
x sin| - |sin| - | neven (B4]
-4k K,
O3 101(®) = wiian 10 @) Kkn(—KZ., + iwpo)
Sy L fmT B5
X sin| - |sin| | neven (BS]
—4k2,
q)l(ri)n,ooo(w) = Mll’l(rgn)n,ooo(w) Kikm( =Ko + T0opo)
AL AN m7T> 4d B6
X sin| - |sin| - | nodd. [B6]

The power spectra of the flux components are given by

16Kk

|q)lmn,01l(w)| 2= /“'2|lpl(r?1)n,01l(w)|2 klzkfn[klzlmn ¥ (w[.LO') 2]

|7 mr
X sin2(2> sin2<2> n even [B7]
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16k2k3 Separating out the frequency independent parts, we have

|(I)Imn,101(w)|2 = l“'2|lpl(r?1)n,101(w)|2 klzkfn[kﬁmn + (wpo) 2]

| . le( k2 N k2 ) .2(|77> _2<m17>
T mmr = o\ 2 T a2 |Sin?l 5 ]sin?l —5—| n even
X sin2(2>sin2<2> n even (B8] ™ abe \kikf, ki 2 2
[B17]
16p [ k&, |7 mar
16k; RPn = ( sin?l —-|sin?l ——| n odd. [B18]
2= 21 y® 2 m mn T abe \ kZk2, 2 2
| P mn00o @) 1% ’lplmn,ooo(w)’ k2K2[kE + (opo)?] '
s 2 |7T .2 mmr . . e . .
X sin 3 sin - n odd. [B9] With these definitions, we form a concise solution:
g
At this point we need to evaluate the power spectra of Egs. R — RO @ iinn (B19]
[71], [72], [73] in terms of the rms values in Eq. [13], mn mn w2\?1"
1+
®imn
kT
[l 012(@)| > = Am2Af ([ Wimmon(D]? = o?kZ abe Note we can look at the 2D current in the limit of a long
conductorc — L. Here we have
[B10]
1 kT
(2) 2 _ (3) 2\ n
|¢Imn,101((’))| 47T2Af <|¢’Imn,101(t)| > p’7T2k|2nabC kn — 7: N 0 [BZO]
[B11]
|y ,_ 1 6) 2y _ kT In this limit we see that for a long sample, the time-average
llflmn,ooo(w)| - 2 <|l/f|mn,ooo(t)| ) = 21,2 . . . - . |
4 2Af pmkiabc intensity given in Egs. [81] and [B12] changes and become
[B12] TAr
4KT.
Evaluating the noise resistance at the resonance frequency, (i — pkZab2L’ [B21]
we find
leaving
’7T2w2 3
len: ﬁ E |(I)Ivmn,pqr("')o)|2 [813] . 16p 1 1 - | - mar .
=1 mn — A~ | o3+ %] sin?l 5| sin =R
ab(2L) \ ki = kg, 2 2
) m2w? 16kT [B22]
len =K 2 4 2 2
KT pmabdKim, + (wono)?]
and
(K)ol " i ™) 1 odd B14
k2kz)SM\ 2 s\ ) o [B14] O = Oy [B23]

R 2 GGE 16kT This agrees with the 2D case. The RF coil “feels” the nois
= 5 - — [ Wi . [ i
KT pm*abdkim, + (wopn0)’] from the X and§ noise generatorg(1) andy(2) through the
k2 k2 | mar spatial harmonics associated wkh
X ( )sin2< )sin2< ) n even.

2

vevz T ooz ) An alternative equivalent demonstration of the 2D limit cau

k2k2 k2k 2
mmn BN be derived starting from a finite RF coil. Assume the RF co
[B15] extends from-c, to c,, with N, turns per meter, the total flux

o . ) induced sensed by the coils is
Here it is convenient to define

zmn CI)mn r =N, 0 (Dmn A Z, dz B24
O = [B16] imnpar(©) L imnpar( 2, ©) [B24]

0
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Incorporating this integration into the frequency independelricorporating the volume of the conductor we have

part of the noise resistance, we have

16p
o _ 2ai -
Imn — Ntsmcz(knco) abc(

k2

KK

16p [ ki
[ 2ai
Imn — NISInCZ(knCo) abc (klzkﬁ)

I m
X sin2<;> sinz(;> odd n.

In these expressions, the total number of tUkpgomes from

the definition ofN, in the expression

Co
u- |
—c

N,dz = 2¢,N,.

0

For the 2D model¢ — L so thatk, — 0 andw,,, — o, and 2
the mode intensity is reduced Byas described in Eq. [47]

k2
" kfk%n)

|7 mar
X sinz(z) sinz(z) evenn

[B27]

because the dependence is removed. This results in

I,m od

16p (1 1
— 2 _ -
Rnoise_ Nt 2 dab2L (klz + kr2n> |: R

[B25]

[B26]

onN

w

64p (1 1 ®
Ruoise= NZ 2 V<k2+ kz) T o2\ 7]
I,m odd ' m [1+ () ]
Wim
[B29]

For a single turn, this reduces to the 2D expression in Eq. [6¢
QED

§N
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