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Magnetic flux noise is generated by any conductor in equilib-
rium with a bath as a result of random fluctuating currents. A
physical model of this flux noise is proposed, based on allowable
current patterns in the conductor, which we describe as natural
current modes. This model gives insight into the spatial charac-
teristics of the magnetic noise which is encountered in a variety of
magnetic measurements and imaging modalities such as magnetic
resonance imaging (MRI). © 2000 Academic Press

Key Words: magnetic resonance imaging; signal-to-noise ratio;
magnetic flux noise; current noise; high-temperature supercon-
ducting RF coils.

INTRODUCTION

With the advent of high-temperature superconducting
coils, there is a pressing need to understand the unde
noise sources in magnetic resonance imaging (MRI). S
conductors have made it possible to obtain more perfect
noise images from patients without the interference of n
from the RF coil. The same is true for nuclear magn
resonance (NMR) applications and other applications requ
the detection of magnetic flux.

Historically, models describing the noise detected from
ducting bodies commonly invoke the reciprocity theorem.
approach was introduced by Houltet al. (1, 2) to explain the
signal-to-noise ratio in NMR and MRI. In this method,
noise resistance is computed indirectly from the loading o
detection coil as if it were a transmitter. The idea underl
this approach is reciprocity between detection and trans
sion, i.e., the source resistance of a detector coil is equa
the load resistance of an equivalent circuit in which the de
tor is used as a transmitter. This is a convenient too
computing the response of a given coil geometry, but it
little for understanding the noise patterns underlying the
tection coils. We suggest an alternative method, a more
damental approach using three-dimensional current
sources. This method is an expansion of previous work (3, 4).

PHYSICAL DESCRIPTION

For simplicity, we begin by considering a homogene
conductor which is electrically isolated from external cur
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sources but is in thermal equilibrium with a bath. In
source-based picture, flux noise in this conductor arises
randomly fluctuating noise currents. Random noise curren
movements of charge forming a dissipation which is in e
librium with the bath.

We have some limited knowledge of these currents. First o
the currents are confined to the conductor. Mathematically
can use this information to express the current as a ser
orthogonal spatial functions. A key part of the physical mod
the realization that the series of spatial functions correspo
natural current modes, each having a distinct pattern. In
source-based picture, each individual current mode is assign
amplitude which varies randomly in time. Collectively, th
currents form the composite fluctuating current. The spatia
pendence of the natural current modes depends primarily o
sample shape and geometry. Each mode is independent
other and represents a single degree of freedom for the cu

Another consequence of the currents being confined i
the conductor is the requirement that the current density a
instant may not enter or exit on any part of the surface o
conductor. While this may be viewed an obvious requirem
it imposes restrictions on the allowable current paths. T
combined with electrical isolation (no externally applied v
age sources within or on the surface of the conductor), fo
the noise current to flow in closed loops, solenoidal in na

In addition to the obvious restrictions on the spatial de
dence, there are restrictions on the time dependence o
currents as well. Although noise currents are random, we
some knowledge of their average intensity, which is ap
tioned by thermal equilibrium. Each mode is in thermal e
librium since it represents a degree of freedom in the sys
Knowledge of the intensity and spatial dependence of ran
noise currents is all that is required to evaluate noise
detected by any flux sensitive detector. The currents gen
fluctuating fields and magnetic flux which can be comp
directly from Maxwell’s equations.

THE NATURE OF CURRENT NOISE

We begin the analysis by assuming the noise current de
resides inside the conductor. The conductor is assumed
1090-7807/00 $35.00
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154 MICHAEL J. HENNESSY
electrically isolated with no externally applied scalar poten
at or near the conductor. We also assume there are no a
ciable displacement currents inside or outside the condu
These assumptions are consistent with the so-called “q
static” approximation for electrically isolated conductive m
terials, which have ((ve)/s) ! 1. (In the case of whole bod
MRI this applies for frequencies below 64 MHz.) With th
restrictions, the noise current cannot build up charge no
cape at any point on the surface. Consequently, the
current density normal to the surface of the conductor vani
so that,

J ? n̂ 5 0, [1]

where n̂ is normal to the surface andJ is the noise curren
ensity. The noise currents are physical currents, which m

hey must obey the continuity relation given by,

¹ z J 1
r

t
5 0. [2]

Because we have assumed the conductor is uniform and
trically isolated, there are no charge sources or sinks in
conductor. This means there is no change in charge, so th
divergence of the current must be zero, hence

¹ z J 5 0. [3]

VECTOR NOISE SOURCE (c¢ )

Since the divergence of the current density is zero, t
exists a generating vector functioncW , such that

J 5 ¹ 3 cW . [4]

In this context,cW automatically satisfies the divergence eq
tion, Eq. [3], since the divergence of the curl of any ve
function is zero. We seek a realistic set of solutionscW which
atisfies the boundary conditions. As a consequence
eans that not all spatial behavior is acceptable. The
oundaries of the conductor “filters” out some solutions.
The functioncW can be interpreted physically as a magn

ation density, as a current stream function, or as an el
ector potential. These are all equivalent interpretations (5, 6).
n the context of our application, we prefer to viewcW as the
fundamental noise source, a source stream function w
generates current density noise. The current density noise
primary interest here because we can investigate the dissi
and the fields generated by it. We assume the current de
noise source,cW , is a white vector noise source, a funct
whose amplitude, phase, and direction varies randomly in
One way of describingcW is to define it in terms of thre
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independent random variables. In the Cartesian coordin
one can representcW as

cW 5 c ~1!x̂ 1 c ~2!ŷ 1 c ~3!ẑ. [5]

Each component is a scalar noise source, uncorrelate
independent of the other. The concept of expressingcW in terms

f three scalar noise sources is valid in any orthogonal c
inate system. For the Cartesian coordinate system, we se
ach component ofcW produces two components of curr

density given by

J ~1! 5 ¹ 3 @c ~1!x̂# [6]

J ~2! 5 ¹ 3 @c ~2!ŷ# [7]

J ~3! 5 ¹ 3 @c ~3!ẑ#. [8]

hese currents are two-dimensional in nature and lie in a
erpendicular to the source, as shown in Fig. 1. For exam

c(1) generates onlyy–z currents which circulate about thex̂
axis. The total current density noise is the sum of all
two-dimensional current densities and is given by

J 5 O
n51

3

J ~n!. [9]

The noise current consists of a superposition of three
dimensional currents which are independent and uncorre

FIG. 1. The decomposition of three-dimensional current density into
independent two-dimensional parts. The sourcec(1) is in the x direction and
generatesJy

(1) andJz
(1). The circular current loops nearJy

(1) andJz
(1) are typica

of those created byc(1). Current densities and current loops are also show
the other orthogonal sourcesc(2) andc(3).
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155A 3D PHYSICAL MODEL OF MRI NOISE
with one another since they are formed from independent
sources. This decomposition allows us to reduce the t
dimensional current density noise into three sets of less
plex two-dimensional current densities, each driven by
independent scalar noise source.

THE CONCEPT OF NOISE SOURCE MODES

Because the noisy region exists only in the conductor an
conductor is bounded, each component of the stream fun
and associated current densities can be decomposed phy
into a sum of spatially independent modes. At any given t
the spatial “boundedness” allows one to expand any co
nent of cW as a series of discrete orthogonal spatial funct
which are identified as modes (7). For example, thex compo-

ent of the source function can be expanded into an in
eries of modes,

c ~1! 5 O
h

ah
~1!~t!wh~ x, y, z!, [10]

here,wh is the orthogonal spatial function of thehth mode
The amplitudeah

(1)(t) is a randomly fluctuating function re-
esenting the strength of thehth mode at a given time. The to

noise current associated with thex directed stream function
a sum over modes and is given by

J ~1! 5 O
h

J h
~1!, [11]

where

J h
~1! 5 ¹ 3 x̂ah

~1!~t!wh~ x, y, z!. [12]

CURRENT NOISE INTENSITY

The noise picked up by RF coils or flux sensors in M
measurements is thermally driven magnetic noise from
sample itself. For the model, we assume for simplicity tha
MRI sample is a conductor with a resistivityr and is in
equilibrium with a bath near room temperature. For M
applications, the noise power spectrumG is independent o
frequency over the measurement bandwidth and is given b
Nyquist relation, which can be expressed simply as,

G 5 4kT. [13]

The fluctuating power associated with black body radia
over a given bandwidthDf is simply

P 5 4kTDf. [14]

On the other hand, time-averaged dissipated power as
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ated with the fluctuation of a current density spatial modh
from a given source componentn at a frequencyf is given by

Pd 5 K r EEE U J h
n~r , t!U 2

dVL . [15]

These powers are in equilibrium which allows us to wr

K r EEE U J h
n~r , t!U 2

dVL 5 4kTDf. [16]

Thermal equilibrium is isotropic here, with no preferenc
noise source directionn. [In Ref. (8), the Nyquist relation
which has been recast in Eq. [16], is derived using the me
of Kubo. The equilibrium condition with blackbody radiati
is sometimes described in statistical mechanics as the flu
tion dissipation theorem.]

The powerPd represents the power dissipated by the sou
assuming no loads are connected to the source. This is
heating due to the source currents alone. It also represen
maximum available power which can be delivered to exte
circuits. There is also Joule heating due to eddy currents
current noise sources induce a minuscule amount of
currents in the conductor. In this case, the conductor itsel
as an “external circuit.” The source currents magnetic
couple to the conductor which appear as a load. Eddy cu
dissipation does not play a role in partitioning the avail
noise power in the conductor, because eddy currents are
currents rather than source currents. Eddy currents devel
inductive coupling and shield the magnetic fields generate
noise currents, giving rise to a penetration or skin depth e

RELATIONSHIP BETWEEN CURRENT DENSITY NOISE
AND RF COIL FLUX

Noise in a conductor appears as time-dependent fluctu
current densities which act as field sources, inducing mag
flux and generating a voltage which can be detected
detector coil or RF receiver coil. (Here we assume the RF
consists of perfect conductors and does not generate an
ditional noise in the detection process.) The fluctuating cu
density and its associated fields also generate eddy curre
the conductor, which tend to shield the flux. This can easi
seen from Maxwell’s equations involving the noise cur
densityJnoise,

¹ 3 B 5 m~Jnoise1 Je! [17]

¹ 3 E 5 2
B
t

[18]
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156 MICHAEL J. HENNESSY
¹ z B 5 0 [19]

¹ z E 5 0. [20]

In Eq. [17] we assume a quasi-static behavior where cur
are flowing through a homogeneous conductor with neglig
displacement currents. The eddy currentJe induced by th
noise current is given through Ohm’s Law,

Je 5 sE. [21]

In this analysis we assume the conductivitys is independent o
frequency, which is usually valid within the bandwidth of
measurement.

Since the divergence ofB is zero, we introduce the vect
potentialA,

¹ 3 A 5 B. [22]

Substituting Eq. [22] into Maxwell’s equation [17] and a
into Ohm’s law, we obtain the differential equation for
vector potential inside the conductor in terms of the n
current density,

2¹ 2A in 1 ms
A in

t
5 mJnoise. [23]

The time dependence of the vector potential generate
electric field since,

E 5 2¹V 2
A
t

.

In this analysis, we have selected the Coulomb g
(¹ z A 5 0) and since there are no voltage sources, the
potential V is zero or constant both inside and outside
conductor and does not contribute to the formation of field
currents. Consequently, the induced currents are eddy cu
and are given by

Je 5 2s
A in

t
. [24]

he eddy currents are not primary source currents, but r
econdary “load currents,” currents resulting from the ch
ng fields generated by the source currents. Outside the
uctor, the vector potential obeys a slightly different equa

2¹ 2A out 5 mo~Jnoise1 Je!. [25]

n a typical flux-detection measurement, a coil is used
ts
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etector and it is placed about the sample. The flux induc
detector coil is given in terms of the vector potential as

F~t! 5 T
coil

B~r , t! z dS 5 R
coil

A ~r , t ! z dl . [26]

The analysis clearly demonstrates that the flux noise picke
in an RF coil is driven by current density noise through
vector potential. The exact form of the vector potential dep
on whether the RF coil lies inside or outside the sample.

NOISE IN THE RF COIL

The relationship between current density noise, flux n
and detectable voltage noise in an RF coil can be foun
starting from the definition of mean squared flux, which
given by

F rms
2 ; lim

T3`

1

T E
2T/ 2

T/ 2

F 2~t!dt. [27]

Moving from time to frequency, we define the Fou
requency componentsF(v) as

F~t! 5 E
2`

`

F~v!exp~ivt!dv, [28]

and where

F~v! 5
1

2p E
2`

`

F~t!exp~ivt!dt. [29]

For MRI applications one is usually interested in a relati
arrow band of frequencies centered about the resonan
uency (v o). Assuming the flux noise spectrumF(v) is fairly
onstant over a bandwidthDf centered atv o, the root mea

squared flux in the time domain is given by

F rms
2 5 ~2p! 2DfuF~vo!u 2. [30]

For an RF coil detector, a single-turn or multiturn loop
formed around the region of interest. The voltage meas
across a single-turn RF coil is the time derivative of
induced flux which leads to

uV~vo!u 2 5 v o
2uF~vo!u 2. [31]
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157A 3D PHYSICAL MODEL OF MRI NOISE
In a similar manner, one can relate the rms voltage to
voltage power spectrumuV(v)u 2 in

Vrms
2 5 ~2p! 2DfuV~vo!u 2. [32]

The voltage power spectrum is normally measured in MRI
it is related to the flux power spectrum in

Vrms
2 5 ~2p! 2Dfv o

2uF~vo!u 2. [33]

At this stage, it is common to express the noise in term
an equivalent noise resistance seen by the RF coil. In
instance, the noise resistance of a perfect lossless RF c
defined through the Nyquist relation,

Vrms
2 5 4kTDfRnoise. [34]

Comparing the voltage noise associated with flux in Eq.
to the usual Nyquist formula, the equivalent noise resistan
an RF coil can be identified as

Rnoise5
p 2v o

2

kT
uF~vo!u 2, [35]

where

F~vo! 5 T
coil

B~r , vo! z dS [36]

and

B~r , vo! 5
1

2p E
2`

`

B~r , t!exp~ivot!dt. [37]

We can also identify the noise resistance associated w
articular spatial current mode. Since the currents and fie
ach mode are uncorrelated, the flux from each mode is
ncorrelated. This leads to a form valid in any orthogo
oordinate system,

Rnoise5 O
n51

3 O
h

Rh
~n!, [38]

where

Rh
~n! 5

p 2v o
2

kT
uF h

~n!~vo!u 2, [39]
e

d

of
is

l is

]
of

a
of
lso
l

in which Fh
(n)(v o) is the flux generated by thenth scalar nois

source component and thehth spatial mode. For the Cartes
case, the noise resistance has separate contributions fromx, y,

noise source stream functions.

TWO-DIMENSIONAL NOISE SOURCES
IN A RECTANGULAR CONDUCTOR

As a simple demonstration of the source-based meth
ogy, we consider the case of a long rectangular conductor
uniform conductivity. This conductor has dimensions 2a
2b and a very long length 2L shown in Fig. 2. Since
conductor is extremely long in thez direction, we can negle
end effects, which means the source and its associated cu
are independent ofz. This reduces to a two-dimensional pr
lem with the stream function in thez direction, generatin
noise currents only in thex–y plane. Because the current
bounded within a rectangular region in thex–y plane, the
stream function over this region can be expanded into a Fo
series, which is given by

cz 5 c ~3! 5 O
l51

l5` O
m51

m5` O
p50

p51 O
q50

q51

3 c lm,pq
~3! ~t!cos~klx 1 fp!cos~kmy 1 fq!, [40]

where the discrete spatial frequencies are defined as

kl 5
lp

2a
, km 5

mp

2b
, wherel , m 5 1, 2, 3. . . ,

[41]

nd the integersl , m identify the mode pattern and the pha
f p, f q are in phase and out of phase components so tha

FIG. 2. Two-dimensional rectangular sample and RF coil configura
The RF coil and sample are infinitely long in thez direction.
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158 MICHAEL J. HENNESSY
fp 5
pp

2
and fq 5

qp

2
. [42]

his notation is a compact way of representing the con
ional two-dimensional Fourier series which contains all c
inations of sines and cosines. The functionc lm,pq

(3) (t) is the
amplitude of the noise source stream function for a spe
current density mode or pattern. The corresponding cu
densities are derived from the curl ofc(3), which become

Jx
~3!~ x, y, t! 5 2O

l51

l5` O
m51

m5` O
p50

p51 O
q50

q51

3 kmc lm,pq
~3! ~t!cos~klx 1 fp!sin~kmy 1 fq!

[43]

Jy
~3!~ x, y, t! 5 1O

l51

l5` O
m51

m5` O
p50

p51 O
q50

q51

3 klc lm,pq
~3! ~t!sin~klx 1 fp!cos~kmy 1 fq!.

[44]

To meet the boundary conditionJ z n̂ 5 0 at the surface, on
ertain modes are allowed, including

cos~klx! for l 5 odd andp 5 0;
sin~klx! for l 5 evenandp 5 1;
cos~kmy! for m 5 odd andq 5 0;
sin~kmy! for m 5 evenandq 5 1.

This provides a rich mixture of harmonics for genera
random patterns, collectively forming current loops of
imaginable sizes and shapes. In Figs. 3 and 4 we show e
ples of allowable current patterns which fit the boundary
ditions. Note that the even/odd current patterns in Fi
contribute no flux in thex–y plane and are hence invisible
any flux detector which encompasses the boundary o
conductor. It is evident that only odd cosine harmonics, su
those shown in Fig. 3, contribute flux to the RF coil.

The vector current density associated with each mode
now be fully described using Eqs. [43] and [44]. Following
notation in Eq. [8] we have

J lm,pq
~3! ~r , t! 5 2c lm

~3!~t!@kmx̂ cos~klx 1 fp!sin~kmy 1 fq!

1 klŷ sin~klx 1 fp!cos~kmy 1 fq!#. [45]

At this stage, the intensity of the noise source can be f
n-
-

c
nt

l
m-
-
4

he
as

an

d

from thermal equilibrium described in Eq. [16], which expa
into

r^uc lm,pq
~3! ~t!u 2& E

2a

a

dx E
2b

b

d y E
2L

L

dz

3 @km
2 cos2~klx 1 fp!sin2~kmy 1 fq!

1 k l
2sin2~klx 1 fp!cos2~kmy 1 fq!# 5 4kTDf. [46]

FIG. 3. Odd, odd current density modes: (a) contour plot of the lo
order current density noise source model 5 1, m 5 1 in a rectangula
conductor or MRI sample, (b) contour plot of the current density noise s
model 5 5, m 5 9 in a rectangular conductor or MRI sample. The cur
is flowing clockwise in the bright region and counterclockwise in the
region. The noise current density amplitude of a given mode is random in
but flows in the same pattern.
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159A 3D PHYSICAL MODEL OF MRI NOISE
Integrating on the left side, the expression reduces to

^uc lm,pq
~3! ~t!u 2& 5

4kTDf

rk lm
2 ab~2L!

, [47]

here

k lm
2 5 k l

2 1 km
2 . [48]

FIG. 4. Even, odd current density modes: (a) contour plot of cu
ensity noise model 5 2 m 5 5, (b) contour plot of current density no
odel 5 4 m 5 5. The current is flowing clockwise in the bright region a

ounterclockwise in the dark region. An RF coil would have no net
enerated by these current density patterns because there is the same
f current loops flowing clockwise and counterclockwise.
The next step in the analysis is to examine the mag
fields and flux generated by the noise currents. The mag
fields associated with the noise currents are most natu
derived from the magnetic vector potential in the condu
Because the conductor is bounded, the vector potential c
expanded into Fourier components, which are given by

A ~r , t! 5 O
l ,m;p,q

A lm,pq~r , t!, [49]

here

A lm,pq~r , t! 5 Alm
x ~t!x̂ cos~klx 1 fp!cos~kmy 1 fq!

1 Alm
x ~t!ŷ cos~klx 1 fp!cos~kmy 1 fq!.

[50]

Moving from the time domain to the frequency domain

c lm,pq
~3! ~r , v! 5

1

2p E
2`

`

c lm,pq
~3! ~r , v!exp~ivt!dt [51]

J lm,pq
~3! ~r , v! 5

1

2p E
2`

`

J lm,pq
~3! ~r , t!exp~ivt!dt [52]

A lm,pq~r , v! 5
1

2p E
2`

`

A lm,pq~r , t!exp~ivt!dt. [53]

Solving for the vector potential Fourier components using
[49] and [23], the solution becomes

A lm,pq~r , v! 5
mJ lm,pq

~3! ~r , v!

2k lm
2 1 ivms

. [54]

Matching like terms leaves

Alm,pq
x ~v! 5

2mkm

2k lm
2 1 ivms

c lm,pq
~3! ~v! [55]

and

Alm,pq
y ~v! 5

2mkl

2k lm
2 1 ivms

c lm,pq
~3! ~v!. [56]

The complete vector field function associated with a g
mode is then

t

mber
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160 MICHAEL J. HENNESSY
A lm,pq~r , v! 5
2mc lm,pq

~3! ~v!

2k lm
2 1 ivms

3 @kmx̂ cos~klx 1 fp!sin~kmy 1 fq!

1 klŷ sin~klx 1 fp!cos~kmy 1 fq!#.

[57]

To find the magnetic field in the conductor, one uses the
of the vector potential in Eq. [22], which results in

B lm~v! 5 mc lm,pq
~3! ~v!

2k lm
2 ẑ

2k lm
2 1 ivms

3 cos~klx 1 fp!cos~kmy 1 fp!. [58]

ntegrating this over the region defined by the RF coil, one
he magnetic flux, which is given by

F lm~vo! 5 T
coil

B lm~r , vo! z dS. [59]

For the case where the RF coil encloses only the region o
conductor

F lm,pq~v! 5 mc lm,pq
~3! ~v!

2k lm
2

2k lm
2 1 ivms E

2a

a

dx E
2b

b

d y

3 cos~klx 1 fp!cos~kmy 1 fq!, [60]

which becomes

F lm,pq~v! 5 mc lm,pq
~3! ~v!

24k lm
2

klkm~2k lm
2 1 ivms!

3 sinS lp

2 DsinSmp

2 Dcos~fp!cos~fq!. [61]

A net noise flux only exists for oddl , m andp 5 q 5 0,
hich is obvious when examining the current density patt

n Fig. 3. This means the stream function noise and the
oise consist of only cosine terms with oddl and m. It is

nteresting to note that the flux noise and the stream fun
oise or, equivalently, the noise magnetization have sim
patial patterns.
The noise resistance of the mode can be obtained from

oise flux using Eq. [39] with the only surviving terms be

Rlm 5
p 2v o

2

kT
uF lm,00~vo!u 2 [62]
rl

s

he

s
x

n
ar

he

or

Rlm 5
p 2v o

2

kT
uc lm,00

~3! ~vo!u 2
16m 2

k l
2km

2

k lm
4

k lm
4 1 ~voms! 2 . [63]

Substituting the known mean squared intensity of the n
source, we have the corresponding spectral density from
[47],

^uc lm,00
~3! ~t!u 2& 5 4p 2Dfuc lm,00

~3! ~vo!u 2

5
4kTDf

r~k l
2 1 km

2 !ab~2L!
. [64]

his simplifies into

uc lm,00
~3! ~vo!u 2 5

kT

p 2k lm
2 ab~2L!

. [65]

utting this into the formula for noise resistance, Eq. [63]
oise resistance can be written

Rlm 5
64m 2v o

2

r~2a2b!~2L!

1

k l
2km

2

k lm
2

k lm
4 1 ~voms! 2 . [66]

We can associate a characteristic mode frequency for
mode defined as

v lm 5
k l

2 1 km
2

ms
. [67]

So that

Rlm 5 Rlm
o

S vo

v lm
D 2

1 1 S vo

v lm
D 2 , [68]

where

Rlm
o 5

64r

V FS2a

lpD 2

1 S 2b

mpD
2G , [69]

and whereV is the volume of the sample. The total no
becomes a sum over all modes,

Rnoise5 O
l ,m odd

Rlm. [70]
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161A 3D PHYSICAL MODEL OF MRI NOISE
The same expression can be derived using reciprocity m
ods as shown in Appendix I, but the interpretation of
formula is different and it is not obvious that the mo
correspond to specific noise patterns. In the reciprocity c
lation, the dissipated power is caused by induced eddy cu
patterns generated in the sample when the RF coil is use
transmitter. The total load or noise resistance is forme
summing the power dissipation per unit amp caused by
eddy current pattern. This means we can associate the
mitter driven eddy current patterns with the actual spatial n
sources.

THREE-DIMENSIONAL NOISE IN A
RECTANGULAR CONDUCTOR

As an example of a three-dimensional noise source
examine a conductor shown in Fig. 5. Because it is bound
three dimensions, the noise source can be described as a
of three-dimensional orthogonal stream functions given b

cx 5 c ~1! 5 O
l50

l5` O
m50

m5` O
n50

n5` O
p50

p51 O
q50

q51 O
r50

r51

c lmn,pqr
~1! ~t!

3 cos~klx 1 fp!cos~kmx 1 fq!cos~knx 1 f r! [71]

cy 5 c ~2! 5 O
l50

l5` O
m50

m5` O
n50

n5` O
p50

p51 O
q50

q51 O
r50

r51

c lmn,pqr
~2! ~t!

3 cos~klx 1 fp!cos~kmx 1 fq!cos~knx 1 f r! [72]

cz 5 c ~3! 5 O
l50

l5` O
m50

m5` O
n50

n5` O
p50

p51 O
q50

q51 O
r50

r51

c lmn,pqr
~3! ~t!

3 cos~klx 1 fp!cos~kmx 1 fq!cos~knx 1 f r!. [73]

Here we have discretek values which are readily identified
the vector

FIG. 5. Three-dimensional rectangular sample and RF coil configura
The RF coil and sample have different lengths in thez direction.
th-
e
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k lmn 5
lp

2a
x̂ 1

mp

2b
ŷ 1

np

2c
ẑ 5 klx̂ 1 kmŷ 1 knẑ [74]

nd the phases

fp 5
pp

2
fq 5

qp

2
f r 5

rp

2
, [75]

where l , m, n, p, q, and r are positive integers. The cor
sponding noise current densities derived from the stream
tions are

J ~1! 5 O c lmn,pqr
~1! ~t!cos~klx 1 fp!

3 @2iknŷ cos~kmy 1 fq!sin~knz 1 f r!

1 ikmẑ sin~kmy 1 fq!cos~knz 1 f r!# [76]

J ~2! 5 O c lmn,pqr
~2! ~t!cos~kmy 1 fq!

3 @iknx̂ cos~klx 1 fp!sin~knz 1 f r!

2 iklẑ sin~klx 1 fp!cos~knz 1 f r!# [77]

J ~3! 5 O c lmn,pqr
~3! ~t!cos~knz 1 f r!

3 @2ikmx̂ cos~klx 1 fp!sin~kmy 1 fq!

1 iklŷ sin~klx 1 fp!cos~kmy 1 fq!#. [78]

As before, the boundary condition requires that the no
omponent of the noise current vanish at the surface, so
nly certain stream function harmonics are allowed. The

owable harmonics are

cos~klx! for l 5 odd andp 5 0;
sin~klx! for l 5 evenandp 5 1;
cos~kmy! for m 5 odd andq 5 0;
sin~kmy! for m 5 evenandq 5 1;
cos~knz! for n 5 odd andr 5 0;
sin~knz! for n 5 evenandr 5 1.

The time-averaged noise intensities can be found by app
the conditions of black body radiation in Eq. [17], from wh
we find

^uc lmn,pqr
~1! ~t!u 2& 5

4kTDf

rkmn
2 abc

[79]

^uc lmn,pqr
~2! ~t!u 2& 5

4kTDf

rk ln
2 abc

[80]

n.
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^uc lmn,pqr
~3! ~t!u 2& 5

4kTDf

rk lm
2 abc

, [81]

where

kmn
2 5 km

2 1 kn
2 [82]

k ln
2 5 k l

2 1 kn
2 [83]

k lm
2 5 k l

2 1 km
2 . [84]

It is interesting to note that the surviving intensities are in
pendent of the phase, specifically the phase variablesp, q, and
r . The vector potentials from each source can be derived
Maxwell’s equations using Eq. [23] and are given by

A lmn,pqr
~1! ~r , v! 5

2mc lmn,pqr
~1! ~t!

2k lmn
2 1 imsv

cos~klx 1 fp!

3 @2knŷ cos~kmy 1 fq!sin~knz 1 f r!

1 kmẑ sin~kmy 1 fq!cos~knz 1 f r!#

[85]

A lmn,pqr
~2! ~r , v! 5

2mc lmn,pqr
~2! ~t!

2k lmn
2 1 imsv

cos~kmy 1 fq!

3 @knx̂ cos~klx 1 fp!sin~knz 1 f r!

2 klẑ sin~klx 1 fp!cos~knz 1 f r!#

[86]

A lmn,pqr
~3! ~r , v! 5

2mc lmn,pqr
~3! ~t!

2k lmn
2 1 imsv

cos~knz 1 f r!

3 @2kmx̂ cos~klx 1 fp!sin~kmy 1 fq!

1 klŷ sin~klx 1 fp!cos~kmy 1 fq!#.

[87]

From the geometry of the RF coil shown in Fig. 1,
magnetic field of interest is in theẑ direction, normal to th
plane of the RF coil. Thez-component of the magnetic field

erived from the curl of the vector potential, and is given

Bz 5
Ay

 x
2

Ax

 y
. [88]

Separating the magnetic field into parts associated with
scalar noise source, we have

B lmn,pqr
~1! ~v! 5

2mklknc lmn,pqr
~1! ~v!

2k lmn
2 1 ivms

cos~klx 1 fp!

3 sin~kmy 1 fq!sin~knz 1 f r!ẑ 1 . . . [89]
-

m

,

ch

B lmn,pqr
~2! ~v! 5

2mkmknc lmn,pqr
~2! ~v!

2k lmn
2 1 ivms

sin~klx 1 fp!

3 cos~kmy 1 fq!sin~knz 1 f r!ẑ 1 . . . [90]

B lmn,pqr
~3! ~v! 5

2mk lm
2 c lmn,pqr

~3! ~v!

2k lmn
2 1 ivms

cos~klx 1 fp!

3 cos~kmy 1 fq!cos~knz 1 f r!ẑ 1 . . . [91]

We proceed to solve the flux in the RF coil, which is given

F lmn,pqr~v! 5 T
coil

@B lmn,pqr
~1! ~v! 1 B lmn,pqr

~2! ~v!

1 B lmn
~3! ~v!# z ẑdxd y. [92]

Grouping the flux by noise components, we have

F lmn,pqr
~1! ~v!

5 mc lmn,pqr
~1! ~v!cos@knz 1 f r#

2klkn

2k lmn
2 1 ivms

3 E
2a

a

dx E
2b

b

d y cos~klx 1 fp!sin~kmy 1 fq! [93]

F lmn,pqr
~2! ~v!

5 mc lmn,pqr
~2! ~v!cos@knz 1 f r#

2kmkn

2k lmn
2 1 ivms

3 E
2a

a

dx E
2b

b

d y sin~klx 1 fp!cos~kmy 1 fq! [94]

F lmn,pqr
~3! ~v!

5 mc lmn,pqr
~3! ~v!cos@knz 1 f r#

2k lm
2

2k lmn
2 1 ivms

3 E
2a

a

dx E
2b

b

d y cos~klx 1 fp!cos~kmy 1 fq!. [95]

The noise resistance is related to the sum of the flux p
spectra of each component, which is written

Rlmn 5
p 2v o

2

kT O
n51

3

uF lmn,pqr
~n! ~vo!u 2. [96]

In Appendix B, we show that for a thin coil located atz 5
0, the noise resistance becomes
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Rlmn 5 m 2
p 2v o

2

kT

16kT

rp 2abc@k lmn
4 1 ~voms! 2#

3 S kn
2

km
2 kmn

2 1
kn

2

k l
2k ln

2Dsin2S lp

2 Dsin2Smp

2 D for n even

[97]

and,

Rlmn 5 m 2
p 2v o

2

kT

16kT

rp 2abc@k lmn
4 1 ~voms! 2#

3 S 1

k l
2 1

1

k l
2Dsin2S lp

2 Dsin2Smp

2 D for n odd.
[98]

his can be rearranged so that the MRI noise resistance
ingle spatial mode becomes

Rlmn 5 Rlmn
o

v o
2

v lmn
2

F1 1 S vo

v lmn
D 2G , [99]

here the characteristic frequencies are defined as

v lmn 5
k lmn

2

ms
. [100]

The frequency independent parts are segregated into od
even parts, where

Rlmn
o 5

16r

abc S kn
2

km
2 kmn

2 1
kn

2

k l
2k ln

2Dsin2S lp

2 Dsin2Smp

2 D n odd,

[101]

Rlmn
o 5

16r

abcS 1

k l
2 1

1

km
2Dsin2S lp

2 Dsin2Smp

2 D n even. [102]

he total MRI noise resistance for the 3D rectangular is
um over all modes, which is

Rnoise5 O
l ,m,n

Rlmn. [103]

The noise consists of terms generated by thez directed
tream functionc(1) and also includes contributions fromc(2)

and c(3). The coil “feels” the noise from thex–y source
through thekn dependence which originates fromc(2) andc(3).

To verify that three-dimensional noise resistance ca
reduced to that of the 2D model, we examine the limiting
f a

nd

e

e
e

of a long sample. We show in Appendix B that asc 3 L,
hereL is large,

kn 5
np

2c
3 0, [104]

rom which follows

v lmn 3 v lm [105]

and

O
n

Rlmn 3 Rlm
o

S vo

v lm
D 2

1 1 S vo

v lm
D 2 . [106]

This agrees with the noise resistance of the two-dimens
model in Eq. [68].

RESULTS

Noise detected in NMR and MRI is a combination of no
generated by the RF coil, the sample, and the RF preampl
(For MRI, the sample noise is normally called patient or b
noise.) The noise of an ideal instrument is dominated by
sample noise. Other noise sources are usually minimize
using high-Q RF coils and low-noise preamplifiers. It has b
knowna priori that the origin of the sample noise is rando
fluctuating currents in the sample.

Sample noise is physically Johnson noise associated wi
sample’s source resistance. Noise is usually described
single scalar parameter with no indication of its spatial de
dence. In this work we have shown that noise can be expr
as a three-dimensional current noise source and is related
temperature and resistivity of the sample. Maxwell’s equa
restrict the allowable current patterns in any bounded con
tive sample. Only certain distinct current patterns (cur
density modes) are allowed to exist in a bounded condu
This restriction also applies to noise current sources. The
noise current consists of a vector sum of these normal m
having randomly fluctuating amplitudes. This makes the n
source current appear as if it were flowing in random p
through the conductor. An example of noise current de
patterns predicted by the two-dimensional model are show
Figs. 6 and 7 for various instances in time.

Current noise generates joule heating which is in the
equilibrium with the bath. Because of the equilibrium con
tion between the bath temperature and the dissipation, o
able to quantify the time-averaged intensity of each inde
dent current density mode. Each current density mode g
ates a fluctuating magnetic field. The fluctuating field prod
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164 MICHAEL J. HENNESSY
flux noise. Flux noise from the noise currents in the samp
patient generates a voltage in RF coils, which is the “b
noise” detected in MRI.

A quasi-static model has been developed in this w
which gives a simple physical picture of imaged no
sources. The noise resistance computed from the mod
a two-dimensional rectangular sample agrees with the
procity methods. It is found that for any given geometry
noise predicted by the source-based approach is not d
ent from that derived from reciprocity. Reciprocity is
fundamentally sound approach for evaluating noise, as
as the system behaves in a linear fashion. The focu
reciprocity is usually a single scalar result like noise re
tance. What is different about the source-based approa
that information about the spatial distribution of the no
naturally flows out of the analysis.

The current is decomposed into spatial modes fluctua
independently from one another. The current modes ca
thought of as localizedk space modes in the sample. T

nalysis shows that MRI noise is not evenly distribute
-space. This should not be surprising, particularly if
isualize a “perfect MRI noise image.” In a perfect M
oise image, magnetic noise should appear only where

s generated. Furthermore, the noise image should ha
ontrast associated with its conductivity and tempera
.e., regions of high conductivity generate more noise s
he noise resistance is proportional to the conductivit
emonstrated in Eqs. [97] and [98]. Most MRI techniq
o not form true noise images or images which reflect

rue location and contrast of the noise sources. Instead,

FIG. 6. A composite current density noise source with mode content
l 5 5, m 5 9 containing only odd harmonics. The pattern represen
napshot of the random current density in a rectangular MRI phantom
ight appear at a given time. The symmetry is due to the presence of on
armonics.
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MRI techniques evenly spread the noise all overk-space
which results in noise spreading throughout all region
image space, including regions were no sample exists. N
spillover is very obvious in human imaging. Regions of h
conductivity (for example muscle) should be noisier t
those of low conductivity (for example fat). This is n
usually observed in MRI images.

The source of this phenomena can be traced to the
images are normally acquired in MRI. The signal spatia
formation is encoded and mixed with a composite noise s
consisting of noise coming from all regions of the sample.
noise is not encoded spatially, so information about its loca
is lost in the acquisition process. In most methods, noi
allowed to leak in uniformly overk-space, whereas the re
noise source is not constant ink-space. A truek-space nois
image would have projections or profiles which would hav
noise beyond the boundary of the sample and a noise inte
which follows the shape of the object. The leaking phenom
makes the noise image appear much different than it ac
is. In many MRI images, the noise image appears uniform
the FOV, whereas in reality it should be confined to the n
source region.

One method of presenting a more realistic noise picture
restricting the FOV. If the FOV is restricted only to a volu
containing the conductive material, the noise outside the
disappears. This can be accomplished by restricting the s
the RF coil or simply by truncating the image at the kno
boundaries of the conductor. Truncation forces the nois
zero in those regions which are known to be void of condu
material. Truncation in space is a form of filtering wh
removes spatially miscodedk-space noise responsible for g

to
a
it

dd

FIG. 7. A composite current density noise source with mode content
l 5 8 m 5 9 containing odd and even harmonics. The pattern repres
snapshot of the random current density as it might appear in a rectangula
phantom. Note the pattern looks random and has no symmetry.
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165A 3D PHYSICAL MODEL OF MRI NOISE
erating noise in void regions. This is a brute force appro
Other techniques combine the use of RF coil arrays (su
SMASH and SENSE) and are more spatially selective, pro
ing an opportunity for the display of a more realistic distri
tion of noise ink-space.

CONCLUSIONS

Two- and three-dimensional models have been develop
explain the behavior of MRI/NMR noise sources which
within the quasi-static (low-frequency) regime. The two
mensional form of the model has been shown to be in a
ment with reciprocity, which has been well established ex
imentally and is routinely used to estimate RF noise attrib
to the sample. The three-dimensional model converges t
two-dimensional model in the limit of long samples.

It is too early to predict exactly what new information w
be gleaned from this model. Often times different views y
different insights which lead to new innovations. Take
example the role of equivalent networks and how power
given representation can be beyond the voltage and curr
predicts. The source-based model gives an equivalent bu
view of the origin and production of sample generated n
working its way into magnetic measurements. The model i
intended to be a routine tool to evaluate the performance
given detector coil configuration which can readily be don
reciprocity and finite element analysis. Instead, the m
presents for the first time a detailed picture of the intri
sample noise, a three-dimensional vector noise source, w
heretofore, has been lumped into a single scalar paramete
as noise resistance or noise voltage. The model is expec
be helpful in formulating and evaluating noise reduction s
egies, especially in MRI systems.

APPENDIX A

Reciprocity Derivation for the Noise Resistance
of a 2-D Rectangular Conductor

Assume the RF coil in the transmission mode consists
infinitely long current sheet flowing around a rectangular s
ple as shown in Fig. 2. The field obeys Maxwell’s quasi-s
equations and Ohm’s Law and is given by

¹ 3 B 5 m~Jd 1 Je!

¹ 3 E 5
B
t

Je 5 sE

¹ z Je 5 0.

Here,Jd is the drive current in the RF coil andJe is the eddy
current developed in the sample. The current sheet is ass
h.
as
d-
-

to
l
-
e-
r-
d
he

d
r
a
t it
ew
e
ot
f a
y
el
c
ch,
uch

to
t-

n
-

c

ed

to be very thin, having a width ofD. Following Fig. A1, the
drive current density for this case can be written as,

Jd 5 lim
D30

K$x̂@n1~ x, a! 2 n2~ x, a!# 1 ŷ@n~ y, b!

2 n~ y, 2b!#%u~ x, a 1 D!u~ y, b 1 D!, [A1]

here

n1~j, a! 5 1 whena , j , a 1 D and zero otherwise

n2~j, a! 5 1 when2a , j , 2a 2 D and zero otherwise

u~j, a! 5 1 when2a , j , a and zero otherwise.

There also exists an eddy current stream function such

¹ 3 cW 5 Je,

which satisfies the divergence

¹ z Je 5 0.

Now the integration over a path shown in Fig. A1 is s
that

T
a,b

¹ 3 B z dS 5 m T
a,b

~Jd 1 Je! z dS 5 mI d 1 mI e.

[A2]

Using Green’s theorem, this reduces to the line integral

R B z dl 5 m T
a,b

Jd z dS 1 R ¹ 3 cW z dS 5 mI d 1 mI e.

[A3]

FIG. A1. Integration path for the two-dimensional noise model.
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Completing the integration

Bz~ x, y! z L 5 mKu~ x, a!u~ y, b! z L

2 m@cz~ x, y! 2 cz~a1, y!# z L. [A4]

Here we have taken the limit for a thin current sheet in
ollowing integrals:

T Jd z dS 5 lim
D30

K E
x

a1 E
0

L

$x̂@n1~ x, a! 2 n2~ x, a!#

1 ŷ@n~ y, b! 2 n~ y, 2b!#%

3 u~ x, a 1 D!u~ y, b 1 D! ? ŷdxdz

T Jd z dS 5 lim
D30

Ku~ x, a 1 D!u~ y, b! z L

5 Ku~ x, a!u~ y, b! z L. [A5]

imilarly in they–zplane,

T Jd z dS 5 lim
D30

Ku~ x, a!u~ y, b 1 D! z L

5 Ku~ x, a!u~ y, b! z L. [A6]

There is no eddy current beyond the conductor, co
uently in this region,c should be a constant or zero. T

means the magnetic field in the sample is related to the
current and eddy currents in the material following Eq. [A

Bz~ x, y! 5 mKu~ x, a!u~ y, b! 2 mcz~ x, y!. [A7]

ince the eddy currents are constrained inside a conducto
tream function can be expressed in a Fourier series,

cz 5 O
lm,pq

c lm,pqcos~klx 1 fp!cos~kmy 1 fq!. [A8]

The current densities are derived from the curl of the s
function and are

J lm
x 5 2kmc lm~t!cos~klx 1 fp!sin~kmy 1 fq! [A9]

J lm
y 5 klc lm~t!sin~klx 1 f l!cos~kmy 1 fm!, [A10]
e

e-

ve
,

the

m

where

kl 5
lp

2a
, km 5

mp

2b
, and l , m 5 1, 2, 3. . . , [A11]

fp 5
pp

2
and fq 5

qp

2
. [A12]

The integersl , m identify the mode pattern, and the phasesf p,
f q are adjusted to meet the boundary conditions. The cha
magnetic field induces the eddy currents, since

¹ 3
Je

s
5

B
t

. [A13]

utting in the sinusoidal dependence we have

isvBz 5
Jx

 y
2

Jy

 x
.

Substituting the current density in the above expression y

isvBz 5 2O
lm

~k l
2 1 km

2 !c lm,pq

3 cos~klx 1 fp!cos~kmy 1 fq!, [A14]

nd since

Bz~ x, y! 5 mKu~ x, a!u~ y, b! 2 mcz~ x, y!, [A15]

O
lm,pq

~k l
2 1 km

2 1 imsv!c lm,pqcos~klx 1 fp!cos~kmy 1 fq!

5 imsvKu~ x, a!u~ y, b!. [A16]

The next step is to identify the stream function harmon
his is easily done if we recognize that the harmonic conte

he two-dimensional unit-bounded function can be expres

u~ x, a!u~ y, b! 5
16

p 2 O
l ,m odd

1

lm
cos~klx!cos~kmy!. [A17]

his implies that only thep 5 0, q 5 0 harmonics contribu
and they are given by

c lm,00 5 2
imsv

k l
2 1 k l

2 1 imsv
Klm, [A18]
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where

Klm 5
16K

p 2

1

lm
wherel , m are odd and zero otherwis

[A19]

In the reciprocity argument, quantity of interest is the po
oading or the power dissipated in the conductor. If we ass
he conductor and RF coil extends fromz 5 2L to 1L the
ower dissipated is

P 5
1

2
r E J z J* dn 5

1

2
r O

l ,m

c lm,00
2 E

2c

c E
2b

b E
2a

a

3 ~k l
2cos2klx sin2kmy 1 km

2 cos2kmx sin2kly!dzd ydx.

[A20]

his reduces to

P 5 256r~msv! 2ab~2L! K 2

3 O
l ,m odd

k l
2 1 km

2

~k l
2 1 km

2 ! 2 1 ~msv! 2

1

l 2m2p 4 . [A21]

The noise resistance is simply equal to the load resist
which can be found from the dissipated power and rms d
current at the resonance frequency, which is given by

Rnoise5 Rload 5
P

S 1

Î2
I dD 2 5

2P

~K z 2L! 2 . [A22]

This leads to

Rlm 5
64sm 2v o

2ab

~8abL!~klkm! 2

3
k l

2 1 km
2

~k l
2 1 km

2 ! 2 1 ~msv o
2! 2 for l , m odd [A23]

Rlm 5
64sm 2v o

2ab

~8abL!~klkm! 2

k lm
2

k lm
4 1 ~msv o

2! 2 for l , m odd,

[A24]

hich agrees with Eq. [66], and where

Rnoise5 O
l ,m odd

Rlm. [A25]

QED.
r
e

ce,
e

APPENDIX B

The Noise Resistance for a 3-D Rectangular Conductor

The noise resistance is obtained by completing the int
tion for the flux in Eqs. [93], [94], [95],

F lmn,pqr
~1! ~v! 5 mc lmn,pqr

~1! ~v!
24klkn

klkm~2k lmn
2 1 ivms!

3 sin@knz 1 f r#sinS lp

2 DsinSmp

2 D
3 cosfpsin fq [B1]

F lmn,pqr
~2! ~v! 5 mc lmn,pqr

~2! ~v!
24kmkn

klkm~2k lmn
2 1 ivms!

3 sin@knz 1 f r#sinS lp

2 DsinSmp

2 D
3 sin fpcosfq [B2]

F lmn,pqr
~3! ~v! 5 mc lmn,pqr

~3! ~v!
24k lm

2

klkm~2k lmn
2 1 ivms!

3 cos@knz 1 f r#sinS lp

2 DsinSmp

2 D
3 cosfpcosfq. [B3]

For a thin coil atz 5 0, the surviving terms for eac
omponent of the flux are

F lmn,011
~1! ~v! 5 mc lmn,011

~1! ~v!
24klkn

klkm~2k lmn
2 1 ivms!

3 sinS lp

2 DsinSmp

2 D n even [B4

F lmn,101
~2! ~v! 5 mc lmn,101

~2! ~v!
24kmkn

klkm~2k lmn
2 1 ivms!

3 sinS lp

2 DsinSmp

2 D n even [B5

F lmn,000
~3! ~v! 5 mc lmn,000

~3! ~v!
24k lm

2

klkm~2k lmn
2 1 ivms!

3 sinS lp

2 DsinSmp

2 D n odd. [B6]

The power spectra of the flux components are given b

uF lmn,011~v!u 2 5 m 2uc lmn,011
~3! ~v!u 2

16k l
2kn

2

k l
2km

2 @k lmn
4 1 ~vms! 2#

3 sin2S lp

2 Dsin2Smp

2 D n even [B7
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uF lmn,101~v!u 2 5 m 2uc lmn,101
~2! ~v!u 2

16km
2 kn

2

k l
2km

2 @k lmn
4 1 ~vms! 2#

3 sin2S lp

2 Dsin2Smp

2 D n even [B8]

uF lmn,000~v!u 2 5 m 2uc lmn,000
~3! ~v!u 2

16k lm
4

k l
2km

2 @k lmn
4 1 ~vms! 2#

3 sin2S lp

2 Dsin2Smp

2 D n odd. [B9]

t this point we need to evaluate the power spectra of
71], [72], [73] in terms of the rms values in Eq. [13],

uc lmn,011
~1! ~v!u 2 5

1

4p 2Df
^uc lmn,011

~1! ~t!u 2& 5
kT

rp 2kmn
2 abc

[B10]

uc lmn,101
~2! ~v!u 2 5

1

4p 2Df
^uc lmn,101

~3! ~t!u 2& 5
kT

rp 2k ln
2 abc

[B11]

uc lmn,000
~3! ~v!u 2 5

1

4p 2Df
^uc lmn,000

~3! ~t!u 2& 5
kT

rp 2k lm
2 abc

.

[B12]

Evaluating the noise resistance at the resonance frequ
e find

Rlmn 5
p 2v o

2

kT O
n51

3

uF lmn,pqr
n ~vo!u 2 [B13]

Rlmn 5 m 2
p 2v o

2

kT

16kT

rp 2abc@k lmn
4 1 ~v o

2ms! 2#

3 S k lm
2

k l
2km

2Dsin2S lp

2 Dsin2Smp

2 D n odd [B14]

Rlmn 5 m 2
p 2v o

2

kT

16kT

rp 2abc@k lmn
4 1 ~v o

2ms! 2#

3 S kn
2

km
2 kmn

2 1
kn

2

k l
2k ln

2Dsin2S lp

2 Dsin2Smp

2 D n even.

[B15]

Here it is convenient to define

v lmn 5
k lmn

2

ms
. [B16]
s.

cy,

Separating out the frequency independent parts, we hav

Rlmn
o 5

16r

abc S kn
2

km
2 kmn

2 1
kn

2

k l
2k ln

2Dsin2S lp

2 Dsin2Smp

2 D n even

[B17]

Rlmn
o 5

16r

abc S k lm
2

k l
2km

2Dsin2S lp

2 Dsin2Smp

2 D n odd. [B18]

With these definitions, we form a concise solution:

Rlmn 5 Rlmn
o

v o
2

v lmn
2

F1 1 S v o
2

v lmn
D 2G . [B19]

Note we can look at the 2D current in the limit of a lo
conductorc 3 L. Here we have

kn 5
np

2c
3 0. [B20]

n this limit we see that for a long sample, the time-avera
ntensity given in Eqs. [81] and [B12] changes and becom

^uc lmn
~3! ~t!u 2& 3

4kTDf

rk lm
2 ab2L

, [B21]

eaving

Rlmn
` 3

16r

ab~2L! S 1

k l
2 1

1

km
2Dsin2S lp

2 Dsin2Smp

2 D 5 Rlm
`

[B22]

and

v lmn 3 v lm. [B23]

This agrees with the 2D case. The RF coil “feels” the n
from the x̂ and ŷ noise generatorsc(1) andc(2) through the
spatial harmonics associated withkn.

An alternative equivalent demonstration of the 2D limit
be derived starting from a finite RF coil. Assume the RF
extends from2co to co, with No turns per meter, the total flu
induced sensed by the coils is

F# lmn,pqr~v! 5 No E
2c0

c0

F lmn,pqr~ z, v!dz. [B24]
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Incorporating this integration into the frequency indepen
part of the noise resistance, we have

Rlmn
o 5 Nt

2sinc2~knco!
16r

abc S kn
2

km
2 kmn

2 1
kn

2

k l
2k ln

2D
3 sin2S lp

2 Dsin2Smp

2 D even n [B25]

Rlmn
o 5 Nt

2sinc2~knco!
16r

abc S k lm
2

k l
2km

2D
3 sin2S lp

2 Dsin2Smp

2 D odd n. [B26]

n these expressions, the total number of turnsNt comes from
the definition ofNo in the expression

Nt 5 E
2c0

co

Nodz5 2coNo. [B27]

For the 2D model,c3 L so thatkn 3 0 andv lmn3 v lm and
the mode intensity is reduced by1

2 as described in Eq. [4
because thez dependence is removed. This results in

Rnoise5 Nt
2 O

l ,m odd

16r

ab2L S 1

k l
2 1

1

km
2D

v o
2

v lm
2

F1 1 S v o
2

v lm
D 2G .

[B28]
ntIncorporating the volume of the conductor we have

Rnoise5 Nt
2 O

l ,m odd

64r

V S 1

k l
2 1

1

km
2D

v o
2

v lm
2

F1 1 S v 2

v lm
D 2G .

[B29]

For a single turn, this reduces to the 2D expression in Eq.
QED
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